(-4x^2-8x)/(x+2)=-4

Simple and best practice solution for (-4x^2-8x)/(x+2)=-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-4x^2-8x)/(x+2)=-4 equation:



(-4x^2-8x)/(x+2)=-4
We move all terms to the left:
(-4x^2-8x)/(x+2)-(-4)=0
Domain of the equation: (x+2)!=0
We move all terms containing x to the left, all other terms to the right
x!=-2
x∈R
We add all the numbers together, and all the variables
(-4x^2-8x)/(x+2)+4=0
We multiply all the terms by the denominator
(-4x^2-8x)+4*(x+2)=0
We multiply parentheses
(-4x^2-8x)+4x+8=0
We get rid of parentheses
-4x^2-8x+4x+8=0
We add all the numbers together, and all the variables
-4x^2-4x+8=0
a = -4; b = -4; c = +8;
Δ = b2-4ac
Δ = -42-4·(-4)·8
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-12}{2*-4}=\frac{-8}{-8} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+12}{2*-4}=\frac{16}{-8} =-2 $

See similar equations:

| (-4x^2-8x)/(x=2)=-4 | | (X+3)(x+6)=(x-2)(x+5)+12 | | 2x-13=68 | | 10*x/100=10 | | A=3n+13 | | (X+(x-10))(5)=700 | | 3x(x-2)-12=x(1+3x)+4 | | 6-5•4+y/3=1 | | (5x+7)-(3x+4)=7 | | 4x-x-1=14 | | 1x^2-x+360=0 | | 0.1x^2-x+360=0 | | 8=4-y/7 | | x6+2=12 | | 9x+2-6x-8=12 | | 3y+15=7y-37 | | 10x2=4 | | 6x-10=5x+7 | | 3x-23=7x-11 | | 3x-7x=-11+23 | | 2x+9=-2/3x-7 | | 744789437x-834094=3250233 | | 0.5*(19*13)*x=480 | | 10x+50=1/2(8x-29) | | 4(2x+3)-(2-5x)=0 | | .500(x-3)=5000 | | 2p+6=3p–4 | | 4+4y=0 | | 5x+7=11-5x | | 9(4r+3)=6(6r+9) | | 4u+2=5(1-u) | | -10(x+12)+5x=2x-6(6x-9) |

Equations solver categories